z6 - 4z4 - i • z2 + 4i = 0
setze w = z2
w3 - 4 w2 - i • w + 4i = 0 w1 = 4 ist offensichtlich eine Lösung
Polynomdivision (Hornerschema):
Info zu Hornerschema:
www.youtube.com/watch?v=tMehEcEsRsY
(w3 - 4 w2 - i • w + 4i) : (w-4) = w2 - i = z4 - i
→ z2 = 4 oder z4 = i
→ z1,2 = ± 2
z4 = i : r = | i | = 1 , φ = π/2
Formel: n√z = n√r • (cos(φ/n) + i • sin(φ/n + k/n • 2π) mit k = 0,1 ... n-1
r = |z| = |x + i • y| = √(x2+y2) , φ = arccos(x/r) falls y≥0, φ = - arccos(x/r) falls y<0
z3 = √(√2/4 + 1/2) + i ·√(1/2 - √2/4) ≈ 0.9238795325 + 0.3826834323 · i
z4 = - √(√2/4 + 1/2) - i ·√(1/2 - √2/4) ≈ - 0.9238795325 - 0.3826834323 · i
z5 = √(1/2 - √2/4) - i ·√(√2/4 + 1/2) ≈ 0.3826834323 - 0.9238795325 · i
z6 = -√(1/2 - √2/4) + i ·√(√2/4 + 1/2) ≈ - 0.3826834323 + 0.9238795325 · i
Gruß Wolfgang