Aufgabe:
Bestimmen Sie den Stetigkeitsbereich der Funktion \( f: \mathbb{R}^{2} \rightarrow \mathbb{R} \)
$$ f(x, y)=\left\{\begin{array}{ll} {\frac{x y^{2}}{x^{2}+y^{2}} \cdot \cos (\sqrt{x^{2}+y^{2}})} & {\text { , falls }(x, y) \neq(0,0)} \\ {0} & {, \text { falls }(x, y)=(0,0)} \end{array}\right. $$
Für \( (x, y) \neq(0,0) \) ist f als Komposition stetiger Funktionen stetig. Zur Untersuchung der Stetigkeit
in \( (x, y)=(0,0) \) verwenden wir Polarkoordinaten \( \left(\begin{array}{l}{x} \\ {y}\end{array}\right)=\left(\begin{array}{c}{r \cos \phi} \\ {r \sin \phi}\end{array}\right) \) mit \( r \in[0, \infty), \phi \in[0,2 \pi] \)
Dann gilt:
\( \begin{aligned} \lim \limits_{r \rightarrow 0} f(r \cos \phi, r \sin \phi) &=\lim \limits_{r \rightarrow 0} \frac{r \cos \phi r^{2} \sin ^{2} \phi}{r^{2} \cos ^{2} \phi+r^{2} \sin ^{2} \phi} \cdot \cos (\sqrt{r^{2} \cos ^{2} \phi+r^{2} \sin ^{2} \phi}) \\ &=\lim \limits_{r \rightarrow 0} \frac{r^{3} \cos \phi \sin ^{2} \phi}{r^{2}} \cdot \cos r \\ &=\lim \limits_{r \rightarrow 0} r \cos \phi \sin ^{2} \phi \cos r=0=f(0,0) \end{aligned} \)
Damit ist f im Nullpunkt stetig, also auch auf ganz \( \mathbb{R}^{2} \).
Ich habe momentan noch Probleme bei Aufgaben dieser Art (also Stetigkeit). Das pink-makierte ist all das was ich nicht zu 100% verstehe. Vielleicht ist die Aufgabe ja für den einen oder anderen glasklar und möchte mir gerne helfen sie zu verstehen :)
HIer also meine Fragen zur Lösung.
1) Was genau ist gemeint mit für (x,y) ungleich (0,0) sei f als Komposition stetiger Funktionen stetig? Würde mich über eine verständliche Erklärung dieses Satzes freuen!
2) Wieso ist hier der Ansatz, dass man Polarkoordinaten zur Lösung heranzieht?
3) Der berechnete Grenzwert ist 0. Warum ist damit die Funktion im Nullpunkt stetig?
Freue mich auf Antworten! :)