\(p(z) = z^3+(1-2i) \cdot z^2-(1+i)z\)
\( z^3+(1-2i) \cdot z^2-(1+i) \cdot z=0\)
\( z \cdot [z^2+(1-2i) \cdot z-(1+i)]=0\)
\( z_1=0\)
\( z^2+(1-2i) \cdot z-(1+i)=0\)
\( z^2+(1-2i) \cdot z=(1+i)\)
\( z^2+(1-2i) \cdot z+(\frac{1-2i}{2})^2=(1+i)+(\frac{1-2i}{2})^2\)
\( (z+\frac{1-2i}{2})^2=(1+i)+\frac{1-4i+4i^2}{4}=(1+i)+\frac{1-4i-4}{4}=\frac{1}{4} |±\sqrt{~~}\)
\( 1.) \)
\( z+\frac{1}{2}-i=\frac{1}{2} \)
\( z_1=i \)
\( 2.) \)
\( z+\frac{1}{2}-i=-\frac{1}{2} \)
\( z_2=-1+i \)