ich beschäftige mich gerade mit den Grenzwerten von Reihen.
Nun hab ich in einem Buch gelesen, dass bei folgender Reihe gilt: (0<q<1)
Wie komme ich denn auf das Ergebnis? Im Buch wird dazu nichts näheres erläutert.
Danke schon einmal !
$$ \text{Für die geometrische Reihe gilt: }\\\sum_{n=0}^{\infty}{q^n}=\frac { 1 }{ 1-q }\\\text{Leite beide Seiten nach q ab.}\\\sum_{n=1}^{\infty}{n*{ q }^{ n-1 }}=\frac { 1 }{ (1-q)^2 }=\frac { 1 }{ (q-1)^2 } $$
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos