0 Daumen
564 Aufrufe

Ich soll einen Äquivalenzbeweis für folgendes Gesetz durchführen, weiß aber nicht so recht, wo ich anfangen soll.

x (y z) = (x y) (x z

Avatar von

1 Antwort

0 Daumen

Etwa so x (y z) = (x y) (x z

Sei a   ∈   
x (y z)

==>   a  
  ∈   x    ∧   a ∉   y z

==>   a    ∈   x    ∧   a ∉   y   ∧     a ∉   z

==>  ( a    ∈   x    ∧   a ∉   y  ) ∧   (    a    ∈   x   ∧  a ∉   z )

==>  
a    ∈    x y              ∧   a    ∈   x z

==>    a   ∈    
(x y) (x z


Dann umgekehrt :

Sei    a    ∈    (x y) (x z

==>   ............

==>   
a   ∈   x (y z)

Avatar von 289 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community