Punkt A
[-2, -2, -4] + r·[-2, 7, 11] = [5, -3, 0] + s·[-7, 1, -4] --> r = 0 ∧ s = 1
A = [-2, 7, 11]
Punkt B
[-4, 5, 7] + r·[9, -8, -7] = [5, -3, 0] + s·[-7, 1, -4] --> r = 1 ∧ s = 0
B = [5, -3, 0]
Punkt C
[-4, 5, 7] + r·[9, -8, -7] = [-2, -2, -4] + s·[-2, 7, 11] --> r = 0 ∧ s = 1
C = [-4, 5, 7]
AB = [7, -10, -11]
AC = [-2, -2, -4]
A = 1/2·ABS([7, -10, -11] ⨯ [-2, -2, -4]) = √995 = 31.54 FE
Winkel bei A
α = ACOS([7, -10, -11]·[-2, -2, -4]/(ABS([7, -10, -11])·ABS([-2, -2, -4]))) = 51.60°