(a) \(f(x)=\frac{\cosh(x)}{2x+1}\) die Ableitung von \(\cosh(x)\) ist \(\sinh(x)\) und ansonsten gilt die Quotientenregel der Ableitung - also
$$f\prime (x)=\frac{\sinh(x)(2x+1)-2 \cosh(x)}{(2x+1)^2}$$
(b) \(f(x)=x \cdot (x+1)^x\) ist nicht so einfach - aber dafür gibt es einen Trick. Es sei \(g(x)=\ln(f(x))\) - dann ist
$$g\prime(x)=\frac{1}{f(x)} \cdot f\prime(x) \quad \Rightarrow f\prime(x)=g\prime(x) \cdot f(x)=\frac{d \ln(f(x))}{dx} \cdot f(x)$$
Nach dieser Methode leite ich zunächst nur \((x+1)^x\) ab:
$$\frac{d(x+1)^x}{dx}=\frac{d \ln((x+1)^x)}{dx} \cdot (x+1)^x=\left( \ln(x+1)+ x\frac{1}{x+1} \right) \cdot (x+1)^x$$
den Rest solltest Du Dir mit der Produktregel selbst ausrechnen können.
(c) \(f(x)=\arctan(e^{3x+2})\) Die Ableitung vom \(\arctan\) ist \(1/(1+x^2)\). Der Rest geht mit der Kettenregel. Zur Kontrolle
$$f\prime(x)=\frac{3e^{3x+2}}{e^{6x+4}+1}$$
Gruß Werner