Wende L'Hospital solange an, bis du beim Einsetzen der 3 für x nicht mehr durch Null teilst. Also
$$ \lim_{x \to 3}\frac{1+\sin\Big(\frac{\pi}{2}x\Big)}{x^2-6x+9}\stackrel{L'H}{=}\lim_{x \to 3}\frac{\frac{\pi}{2}\cos\Big(\frac{\pi}{2}x\Big)}{2x-6}\\\stackrel{L'H}{=}\lim_{x \to 3}\frac{-\Big(\frac{\pi}{2}\Big)^2\sin\Big(\frac{\pi}{2}x\Big)}{2} =\frac{-\Big(\frac{\pi}{2}\Big)^2\sin\Big(\frac{\pi}{2}3\Big)}{2}=\frac{\pi^2}{8}$$