Sei \(A\) eine Zufallsvariable, welche die Augenzahl von Würfel A bei einem Würfelwurf beschreibt.
Sei \(B\) eine Zufallsvariable, welche die Augenzahl von Würfel B bei einem Würfelwurf beschreibt.
Wie groß ist die Wahrscheinlichkeit \(P\left(A > B\right)\)?
(Dabei wird angenommen, dass \(A\) und \(B\) stochastisch unabhängig voneinander sind.)
\( P(A>B) = \sum_{a\in\left\lbrace1, 2, 3, 4\right\rbrace \\ b\in\left\lbrace1, 2, 3, 4\right\rbrace\\ a>b} P\left(A = a, B = b\right) \\ = \sum_{a =2}^{4}\sum_{b = 1}^{a - 1} P\left(A = a, B = b\right) \\ = \sum_{a =2}^{4}\sum_{b = 1}^{a - 1}P\left(A = a\right) \cdot P\left(B = b\right) = \sum_{a =2}^{4}\sum_{b = 1}^{a - 1} P_A\left(a\right) \cdot P_B\left(b\right) \\ = P_A\left(2\right)\cdot P_B\left(1\right) + P_A\left(3\right)\cdot P_B\left(1\right) + P_A\left(3\right)\cdot P_B\left(2\right) \\ + P_A\left(4\right)\cdot P_B\left(1\right) + P_A\left(4\right)\cdot P_B\left(2\right) + P_A\left(4\right)\cdot P_B\left(3\right) \\ = 0.19\cdot 0.02 + 0.22\cdot 0.02 + 0.22\cdot 0.17 \\ + 0.57\cdot 0.02 + 0.57\cdot 0.17 + 0.57\cdot 0.66 \\ = 0.5301 = 53.01\,\% \)