0 Daumen
1,3k Aufrufe

Es seinen Y_1, Y_2,.... Zufallsvariablen, wobei Y_n eine Poisson-Verteilung zum Parameter n
besitzt. Zeigen Sie mithilfe des zentralen Grenzwertsatzes, dass

Limit P(Y_n < n) = 0.5, mit n -> unendlich

Avatar von

1 Antwort

0 Daumen

Der Zentrale Grenzwertsatz sagt das genau für eine Poisson-Verteilung doch aus:limnP[Ynnn0]=Φ(0)=12\lim\limits_{n\to\infty}P\left[\frac{Y_n-n}{\sqrt{n}}≤0\right]=\Phi(0)=\frac{1}{2} Daraus kannst du doch sofort schließen, dass  limn[Ynn]=12\lim\limits_{n\to\infty}\left[Y_n≤n\right]=\frac{1}{2} ist.

Avatar von 28 k

Ein anderes Problem?

Stell deine Frage