0 Daumen
794 Aufrufe

Aufgabe:

 Beispiel:

$$ P= \left(\begin{matrix}0.5&1&1\\0.25&0&0\\0.25&0&0\end{matrix}\right) $$  und der Anfangswert x₀ und Pfeil oben= $$ \left(\begin{matrix}200\\200\\200\end{matrix}\right) $$ entstehen die Verteilungen x₁und pfeil drüber= $$\left(\begin{matrix}500\\50\\50\end{matrix}\right) $$

und dann halt so weiter bis bei x11 und pfeil oben =$$ \left(\begin{matrix}400\\100\\100\end{matrix}\right) $$. das kommt auch bei x12 raus.

Die Verteilung verändert sich nicht mehr, sie ist stabil.


Berechnen Sie die stabile Verteilung im obigen Beispiel.

$$ P= \left(\begin{matrix}0.5&1&1\\0.25&0&0\\0.25&0&0\end{matrix}\right) $$  mal  $$\left(\begin{matrix}x₁\\x₂\\x₃\end{matrix}\right) $$  = $$\left(\begin{matrix}x₁\\x₂\\x₃\end{matrix}\right) $$

jetzt ist das schon gegeben:

$$ \left(\begin{matrix}0.5x₁+x₂+x₃=x₁\\...........=x₂\\..............\end{matrix}\right) $$  und direkt daneben $$ \left(\begin{matrix}-0.5x₁+x₂+x₃=x₁\\...........=x₂\\..............\end{matrix}\right) $$

Wir setzen x₃=t und erhalten unendlich viele Lösungen mit x₁=4t; x₂=t, x₃=t. Da die Gesamtzahl 600 beträgt, ist die Lösung_________.


ich weiß nicht was ich machen soll :(

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

x₁=4t; x₂=t, x₃=t. Da die Gesamtzahl 600 beträgt,

hast du  4t+t+t=600 ==>  t=100.

Also x3=100    x2=100   x1=400

Avatar von 289 k 🚀

Okay danke und was muss ich dann bei der Matrix da eintragen also das, was da oben ist wo ich ..... und so gemacht habe

 :(

Immer Zeile mal Spalte, also in der 2. Zeile statt ….

0,25x1+0x2+0x3=x2

und in der dritten

0,25x1+0x2+0x3=x3

Und direkt daneben heißt es wohl

-0,5x1 + x2 + x3 = 0   Null !

Und bei den anderen :

0,25x1-x2+0x3=0

und in der dritten0,25x1+0x2-x3=0

Jetzt Gauss-Algorithmus anwenden.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community