\(f(x) = \frac{2}{t} x^3 - 2x^2 + \frac{t}{2} x\)
Berechne die Hoch- und Tiefpunkte in Abhängigkeit von t.
\(f'(x) = \frac{6}{t} x^2 - 4x + \frac{t}{2} \)
\(\frac{6}{t} x^2 - 4x + \frac{t}{2}=0|\cdot \frac{t}{6}\)
\(x^2 - \frac{2t}{3}x =-\frac{t^2}{12}\) quadratische Ergänzung:
\(x^2 - \frac{2t}{3}x+( \frac{t}{3})^2=-\frac{t^2}{12}+( \frac{t}{3})^2\) 2.Binom:
\((x - \frac{t}{3})^2=\frac{t^2}{36}|±\sqrt{~~}\)
1.)
\(x - \frac{t}{3}=\frac{t}{6}\)
\(x_1 =\frac{t}{2}\)
\(f(\frac{t}{2}) = \frac{2}{t} (\frac{t}{2}) ^3 - 2(\frac{t}{2}) ^2 + \frac{t}{2} (\frac{t}{2})=0 \)
2.)
\(x - \frac{t}{3}=-\frac{t}{6}\)
\(x_2 =\frac{t}{6}\)
\(f(\frac{t}{6}) = \frac{2}{t} (\frac{t}{6})^3 - 2(\frac{t}{6})^2 + \frac{t}{2} (\frac{t}{6})=\frac{t^2}{27}\)
Art der Extremwerte:
\(f''(x) = \frac{12}{t} x - 4 \)
\(f''(\frac{t}{2}) = \frac{12}{t} (\frac{t}{2}) - 4 =6-4=2>0\) Mimimum
\(f''(\frac{t}{6}) = \frac{12}{t} (\frac{t}{6}) - 4=2-4=-2<0 \) Maximum