1. Einführung
In der Schule lernt man ziemlich früh, Zahlen zu runden. Später erfährt man dann mehr über periodische Brüche und gelangt früher oder später sicherlich zu der Erkenntnis, dass \(0.\overline{9}\) gerundet \(1\) ergibt. Es ist jedoch so, dass \(0.\overline{9}\) nicht nur gerundet, sondern exakt \(1\) ist. Warum das so ist, werden wir nun auf zwei Arten zeigen.
2. Beweis durch Bruchrechnung
Der Bruch \(\frac{1}{3}\) kann durch die periodische Dezimalzahl \(0.3333...\), also \(0.\overline{3}\) dargestellt werden. Es gilt also: $$0.\overline{3}=\frac{1}{3}$$ Wenn du nun beide Seiten mit \(3\) multiplizierst, erhältst du: $$3\cdot 0.\overline{3}=3\cdot \frac{1}{3}$$ und das ergibt $$0.\overline{9}=1$$ Dieser Beweis überzeugt jedoch nur bedingt, da wir davon ausgehen müssen, dass \(0.\overline{3}\) tatsächlich exakt \(\frac{1}{3}\) ist. Wir müssten zuerst beweisen, dass \(0.\overline{3}=\frac{1}{3}\) und könnten das dann erst für unsere Argumentation verwenden.
3. Beweis durch die geometrische Reihe
Viel besser ist hingegen der Beweis über die geometrische Reihe. Die periodische Dezimalzahl \(0.\overline{9}\) lässt sich durch die Summe $$9\cdot \frac{1}{10}+9\cdot \frac{1}{100}+9\cdot \frac{1}{1000}+9\cdot \frac{1}{10000}+...$$ angeben, denn \(9\cdot \frac{1}{10}=0.9\), \(9\cdot \frac{1}{100}=0.09\), \(9\cdot \frac{1}{1000}=0.009\) usw. und wenn du das bis ins Unendliche fortführen würdest, würdest du nach der Addition all dieser Summanden die periodische Dezimalzahl \(0.\overline{9}\) herausbekommen. So weit, so gut. Doch wie hilft dir dieses Wissen jetzt bei deinem Beweis? Die Summe $$9\cdot \frac{1}{10}+9\cdot \frac{1}{100}+9\cdot \frac{1}{1000}+9\cdot \frac{1}{10000}+...$$ kannst du auch mithilfe des Summenzeichens ausdrücken. Wähle dazu als Laufvariable \(k\) mit der Bildungsfunktion $$f(k)=9\cdot\left( \frac{1}{10}\right)^k$$ Lasse die Summe von \(k=1\) bis Unendlich laufen. Somit erhältst du die Summe über \(9\cdot\left( \frac{1}{10}\right)^k\) für \(k\) von \(k=1\) bis \(k=\infty\): $$\sum\limits_{k=1}^{\infty}{9\cdot\left(\frac{1}{10}\right)^k}$$ Den Faktor \(9\) kannst du vor das Summenzeichen ziehen und erhältst: $$9\cdot \sum\limits_{k=1}^{\infty}{\left(\frac{1}{10}\right)^k}$$ Bei dem zweiten Faktor liegt offensichtlich eine geometrische Reihe mit dem Quotienten \(q=\frac{1}{10}\) vor. Da \(|q|\lt 1\) ist, konvergiert die Reihe. Doch gegen welchen Grenzwert konvergiert sie? Um das herauszufinden verwendest du diese Formel: $$\sum\limits_{k=0}^{\infty}{q^k}=\frac{1}{1-q}$$ Beachte aber, dass die Formel bei \(k=0\) und unsere Summe bei \(k=1\) beginnt. Deshalb musst du die Summe bei \(k=0\) starten, um die Formel anwenden zu können. Wie funktioniert das? Nun, du musst den Summanden, der sich für \(k=0\) ergibt, von der Summe abziehen, d. h. du setzt \(k=0\) in die Bildungsfunktion ein und erhältst: \(\left(\frac{1}{10}\right)^0=1\) Diesen Wert ziehst du nun von der Summe ab, d. h. du erhältst: $$\sum\limits_{k=1}^{\infty}{\left(\frac{1}{10}\right)^k}=\left(\sum\limits_{k=0}^{\infty}{\left(\frac{1}{10}\right)^k}\right)-1$$ Für \(\sum\limits_{k=0}^{\infty}{\left(\frac{1}{10}\right)^k}\) kannst du nun mit der Formel und \(q=\frac{1}{10}\) den Grenzwert berechnen und erhältst: $$\sum\limits_{k=0}^{\infty}{\left(\frac{1}{10}\right)^{k}}=\frac{1}{1-\frac{1}{10}}=\frac{1}{\frac{9}{10}}=\frac{10}{9}$$ Von diesem Ergebnis substrahierst du nun die \(1\) und erhältst: $$\sum\limits_{k=1}^{\infty}{\left(\frac{1}{10}\right)^k}=\frac{10}{9}-1=\frac{1}{9}$$ Wie du sicherlich noch weißt, hast du zu Beginn die \(9\) als Faktor herausgezogen. Diese multiplizierst du nun mit dem Ergebnis und erhältst: $$0.\overline{9}=9\cdot \sum\limits_{k=1}^{\infty}{\left(\frac{1}{10}\right)^k}=9\cdot \frac{1}{9}=1$$ Damit ist nun bewiesen, dass \(0.\overline{9}\) nicht nur gerundet, sondern exakt \(1\) ist.
Das Mitglied hat durch den Artikel 50 Bonuspunkte erhalten. Schreib auch du einen Artikel.