Hab mal ne ganz blöde Frage, wie ermittelt man eigentlich nochmal dimK(V) einer Matrix?
zb habe ich folgende Aufgabe:
Suche ein geeignetes Beispiel unter diesen Voraussetzungen:
dimK(V) = 4 und | Spek(α)| = 2. Bei einem der Eigenwerte stimmen die algebraische und die geometrische Vielfachheit überein, bei dem anderen nicht!
Meine Überlegung wäre jetzt
\( \begin{pmatrix} 1 & 0&0&0&0 \\ 0 & 0&0&0&0\\0 & 0&0&0&0\\0 & 0&0&0&0\\0 & 0&0&0&0 \end{pmatrix} \)
Dann hätte man nen char Polynom mit x4(x-1), also x1 = 1 und x2 = 0 für die Eigenwerte und somit wäre dann x1 algebraisch und geometrisch gleich und bei x2 algebraisch 4 und geometrisch 1. Wie aber verhält es sich jetzt mit dimk(V), entspricht das für ℝnxn dimK(V) = n oder dimK(V) = n - Rang(M) oder vll was ganz anderes?