Geben Sie alle AffinitätenT: A2→A2 mit det(→T) = 1 und Spur(→T) = 0 an, die die Geraden G1={(t,0)|t∈R}und G2={(2,t)|t∈R}jeweils auf die Geraden G′1={(t,t)|t∈R} und G′2={(5,t)|t∈R}und außerdem den Punkt p=(2,0) auf denPunkt p′=(0,0) abbilden.
Sei Te ine affine Transformation mit den geforderten Eigenschaften, wobei wir zunächst p=(2,0)annehmen. Wir setzen e1:=(1,0), e2:=(0,1), v1:=(1,1) und v2:=(5,1) sowie p1:=p+e1 und p2:=p+e2.
Da T die Gerade G1=p+⟨e1⟩nach Voraussetzungauf die Gerade G′1=p′+⟨v1⟩abbildet, gibt es eine Konstante λ∈R mit p′+λ·v1=T(p1) =p′+(→T)(→pp1) =p′+(→T)(e1). (1)
Wegen G2 =p+⟨e2⟩, G′2=p′+⟨v2⟩ existiert dann auch eine Konstante μ∈R mit p′+μ·v2=T(p2) =p′+(→T)(→pp2) =p′+(→T)(e2). (2)
→T bedeutet immer, dass der Pfeil über dem T steht.
Kann mir jemand erklären, wie ich afu die Gleichungen (1) und (2) komme?
Ich kann die Schritte leider nicht nachvollziehen. Der Rest der Aufgabe ist mir dann klar.
Danke schon mal für eure Hilfe