Aloha :)
Nach \(X^{-1}\) ist nicht gefragt, du sollst \(X\) und \(\det(X)\) bestimmen:
$$A=\left(\begin{array}{c}1 & -3\\0 & 1\end{array}\right)\quad;\quad B=\left(\begin{array}{c}1 & 3\\-1 & 1\end{array}\right)\quad;\quad C=\left(\begin{array}{c}-2 & 10\\13 & -23\end{array}\right)$$
$$AX+BX=C\;\;\Leftrightarrow\;\;(A+B)X=C\;\;\Leftrightarrow\;\;\left(\begin{array}{c}2 & 0\\-1 & 2\end{array}\right)X=\left(\begin{array}{c}-2 & 10\\13 & -23\end{array}\right)$$
$$X=\left(\begin{array}{c}2 & 0\\-1 & 2\end{array}\right)^{-1}\cdot\left(\begin{array}{c}-2 & 10\\13 & -23\end{array}\right)=\left(\begin{array}{c}\frac{1}{2} & 0\\\frac{1}{4} & \frac{1}{2}\end{array}\right)\cdot\left(\begin{array}{c}-2 & 10\\13 & -23\end{array}\right)=\left(\begin{array}{c}-1 & 5\\6 & -9\end{array}\right)$$
$$\det(X)=(-1)\cdot(-9)-6\cdot5=9-30=-21$$