allerseits!
Angenommen, ich will zeigen, dass die Menge der geraden Permutationen von {\({1,..,n}\)}, genannt \(A_{n}\), zusammen mit der Komposition eine Gruppe ist.
Würdet ihr das direkt machen, indem ihr die Gruppenaxiome nachweist (Assoziativität der Verknüpfung, Existenz des Inversen und Neutralen), oder würdet ihr zeigen, dass \(A_{n}\) eine Untergruppe von \(S_{n}\) ist, sprich Untergruppenkriterien durchgehen?