Aufgabe:
Sei p(T) := Tn−αn−1Tn−1−αn−2Tn−2−· · ·−α0 ∈ K[T] ein Polynom.
Dann heißt die Matrix
A := 0 1 0 0 . . . 0
0 1 0 . . . .
. . 1 . . .
. . . . .. . . . .1
α0 α1 . . . . αn-1
die Begleitmatrix zu p. Zeigen Sie:
(a) Für das charakteristische Polynom χA(T) von p gilt χA(T) = (−1)np(T).
(b) Ist λ Nullstelle von p(T), so ist (1, λ, . . . , λn−1) T Eigenvektor von A zum Eigenwert λ.
(c) Das Polynom p(T) habe n verschiedene Nullstellen λ1, . . . , λn ∈ K. Bestimmen Sie eine
Matrix S, so dass S−1AS eine Diagonalmatrix ist.