Aloha :)
Nachdem wir nun wissen, dass es sich bei den Determinanten um Hochzahlen handelt, musste ich meine Antwort nochmal modifizieren:
zu a) Berechnung der Determinanten
$$\text{det}(C)=\left|\left(\begin{array}{ccccc} {0} & {1} & {0} & {0} & {1} \\ {1} & {0} & {0} & {5} & {0} \\ {0} & {0} & {1} & {0} & {0} \\ {0} & {-2} & {0} & {0} & {0} \\ {1} & {0} & {0} & {0} & {1} \end{array}\right)\right|\stackrel{Sp.3}{=}\,\left|\left(\begin{array}{ccccc} {0} & {1} & {0} & {1} \\ {1} & {0} & {5} & {0} \\ {0} & {-2} & {0} & {0} \\ {1} & {0} & {0} & {1} \end{array}\right)\right|$$$$\phantom{\text{det}(C)}\stackrel{Ze.3}{=}\,2\cdot\left|\left(\begin{array}{ccccc} {0} & {0} & {1} \\ {1} & {5} & {0} \\ {1} & {0} & {1} \end{array}\right)\right|\stackrel{Sp.2}{=}\,2\cdot5\cdot\left|\left(\begin{array}{ccccc} {0} & {1} \\ {1} & {1} \end{array}\right)\right|=2\cdot5\cdot(0\cdot1-1\cdot1)=-10$$$$\text{det}\left(C^{-1}\right)=\frac{1}{\text{det}(C)}=-\frac{1}{10}$$$$\text{det}\left(C^5\right)=\left(\text{det}(C)\right)^5=-100\,000$$
zu b) Lösen des Gleichungssystems mit der Inversen
Berechnung von \(B^{-1}\):$$\overbrace{\left(\begin{array}{c} {0} & {1} & {0} & {0} & {1} \\ {1} & {0} & {0} & {1} & {0} \\ {0} & {0} & {1} & {0} & {0} \\ {0} & {1} & {0} & {0} & {0} \\ {1} & {0} & {0} & {0} & {1} \end{array}\right)}^{B}\quad\overbrace{\left(\begin{array}{c} {1} & {0} & {0} & {0} & {0} \\ {0} & {1} & {0} & {0} & {0} \\ {0} & {0} & {1} & {0} & {0} \\ {0} & {0} & {0} & {1} & {0} \\ {0} & {0} & {0} & {0} & {1} \end{array}\right)}^{B^{-1}}\quad\begin{array}{c} {-Z_4} \\ {-Z_5} \\ {} \\ {} \\ {}\end{array}$$$$\overbrace{\left(\begin{array}{c} {0} & {0} & {0} & {0} & {1} \\ {0} & {0} & {0} & {1} & {-1} \\ {0} & {0} & {1} & {0} & {0} \\ {0} & {1} & {0} & {0} & {0} \\ {1} & {0} & {0} & {0} & {1} \end{array}\right)}^{B}\quad\overbrace{\left(\begin{array}{c} {1} & {0} & {0} & {-1} & {0} \\ {0} & {1} & {0} & {0} & {-1} \\ {0} & {0} & {1} & {0} & {0} \\ {0} & {0} & {0} & {1} & {0} \\ {0} & {0} & {0} & {0} & {1} \end{array}\right)}^{B^{-1}}\quad\begin{array}{c} {} \\ {+Z_1} \\ {} \\ {} \\ {-Z_1}\end{array}$$$$\overbrace{\left(\begin{array}{c} {0} & {0} & {0} & {0} & {1} \\ {0} & {0} & {0} & {1} & {0} \\ {0} & {0} & {1} & {0} & {0} \\ {0} & {1} & {0} & {0} & {0} \\ {1} & {0} & {0} & {0} & {0} \end{array}\right)}^{B}\quad\overbrace{\left(\begin{array}{c} {1} & {0} & {0} & {-1} & {0} \\ {1} & {1} & {0} & {-1} & {-1} \\ {0} & {0} & {1} & {0} & {0} \\ {0} & {0} & {0} & {1} & {0} \\ {-1} & {0} & {0} & {1} & {1} \end{array}\right)}^{B^{-1}}\quad\begin{array}{c} {\to Z_5} \\ {\to Z_4} \\ {} \\ {\to Z_2} \\ {\to Z_1}\end{array}$$$$\overbrace{\left(\begin{array}{c}{1} & {0} & {0} & {0} & {0} \\{0} & {1} & {0} & {0} & {0} \\{0} & {0} & {1} & {0} & {0} \\{0} & {0} & {0} & {1} & {0} \\{0} & {0} & {0} & {0} & {1}\end{array}\right)}^{B}\quad\overbrace{\left(\begin{array}{c}{-1} & {0} & {0} & {1} & {1} \\{0} & {0} & {0} & {1} & {0} \\{0} & {0} & {1} & {0} & {0} \\{1} & {1} & {0} & {-1} & {-1} \\{1} & {0} & {0} & {-1} & {0} \end{array}\right)}^{B^{-1}}\quad\begin{array}{c} {} \\ {} \\ {} \\ {} \\ {}\end{array}$$Anwendung zum Lösen der Gleichungen:$$\vec x=B^{-1}\left(\begin{array}{c}2\\0\\2\\0\\2\end{array}\right)=\left(\begin{array}{c}{-1} & {0} & {0} & {1} & {1} \\{0} & {0} & {0} & {1} & {0} \\{0} & {0} & {1} & {0} & {0} \\{1} & {1} & {0} & {-1} & {-1} \\{1} & {0} & {0} & {-1} & {0} \end{array}\right)\left(\begin{array}{c}2\\0\\2\\0\\2\end{array}\right)=\left(\begin{array}{c}0\\0\\2\\0\\2\end{array}\right)$$$$X=B^{-1}C=\left(\begin{array}{c}{-1} & {0} & {0} & {1} & {1} \\{0} & {0} & {0} & {1} & {0} \\{0} & {0} & {1} & {0} & {0} \\{1} & {1} & {0} & {-1} & {-1} \\{1} & {0} & {0} & {-1} & {0} \end{array}\right)\left(\begin{array}{ccccc} {0} & {1} & {0} & {0} & {1} \\ {1} & {0} & {0} & {5} & {0} \\ {0} & {0} & {1} & {0} & {0} \\ {0} & {-2} & {0} & {0} & {0} \\ {1} & {0} & {0} & {0} & {1} \end{array}\right)$$$$\phantom{X}=\left(\begin{array}{ccccc} {1} & {-3} & {0} & {0} & {0} \\ {0} & {-2} & {0} & {0} & {0} \\ {0} & {0} & {1} & {0} & {0} \\ {0} & {3} & {0} & {5} & {0} \\ {0} & {3} & {0} & {0} & {1} \end{array}\right)$$
c) Zum Beispiel mit dem Gauß-Verfahren.