Aloha :)
$$\left|\frac{a_{n+1}}{a_n}\right|=\left|\frac{(2(n+1))!}{2^{n+1}((n+1)!)^2}\cdot\frac{2^n(n!)^2}{(2n)!}\right|=\left|\frac{(2n+2)!}{(2n)!}\cdot\frac{2^n(n!)^2}{2^{n+1}(n!(n+1))^2}\right|$$$$\phantom{\left|\frac{a_{n+1}}{a_n}\right|}=\left|\frac{(2n)!(2n+1)(2n+2)}{(2n)!}\cdot\frac{2^n(n!)^2}{2\cdot2^n(n!)^2(n+1)^2}\right|=\left|\frac{(2n+1)(2n+2)}{2(n+1)^2}\right|$$$$\phantom{\left|\frac{a_{n+1}}{a_n}\right|}=\left|\frac{4n^2+2n+4n+2}{2n^2+4n+2}\right|=\left|\frac{4+\frac{6}{n}+\frac{2}{n^2}}{2+\frac{4}{n}+\frac{2}{n^2}}\right|\to2>1\quad\Rightarrow\quad\text{divergent}$$