0 Daumen
527 Aufrufe

Aufgabe:

\( \frac{(2n)!}{2^n(n!)^2} \)


Problem/Ansatz:

komme nicht weiter bei (2n+2)! 2^n(n!) ^2/2^n+1 (n+1)! (n+1)! (2n)!

Avatar von

Die „Reihe“ ist bestimmt divergent.

Da gibt es kaum Berechnungsmöglichkeiten außer für festgelegte Zahlen n. Willst du etwas beweisen? Was genau ist dann die Aussage?

Ich sehe keine Reihe. Falsch abgeschrieben?

2 Antworten

+1 Daumen
 
Beste Antwort

Aloha :)

$$\left|\frac{a_{n+1}}{a_n}\right|=\left|\frac{(2(n+1))!}{2^{n+1}((n+1)!)^2}\cdot\frac{2^n(n!)^2}{(2n)!}\right|=\left|\frac{(2n+2)!}{(2n)!}\cdot\frac{2^n(n!)^2}{2^{n+1}(n!(n+1))^2}\right|$$$$\phantom{\left|\frac{a_{n+1}}{a_n}\right|}=\left|\frac{(2n)!(2n+1)(2n+2)}{(2n)!}\cdot\frac{2^n(n!)^2}{2\cdot2^n(n!)^2(n+1)^2}\right|=\left|\frac{(2n+1)(2n+2)}{2(n+1)^2}\right|$$$$\phantom{\left|\frac{a_{n+1}}{a_n}\right|}=\left|\frac{4n^2+2n+4n+2}{2n^2+4n+2}\right|=\left|\frac{4+\frac{6}{n}+\frac{2}{n^2}}{2+\frac{4}{n}+\frac{2}{n^2}}\right|\to2>1\quad\Rightarrow\quad\text{divergent}$$

Avatar von 152 k 🚀

Warum nicht 2(n+1) kürzen?

danke sehr !

0 Daumen

Benutze das Quotientenkriterium um die Divergenz der Reihe zu zeigen, also ist ihr Wert +oo

lul

Avatar von 108 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community