und die 0,97 = p ist
Das ist nicht das \(p\) aus der Binomialverteilung.
Sei \(X\) die Anzahl der Solarzellen, in denen mindestens ein Fehler gefunden wurde.
Gesucht ist das kleineste \(n\), für dass
\(P(X \geq 2) > 0,97\)
ist. Weil \(X\) binomialverteilt ist, ist
\(\begin{aligned} P(X\geq2) & =1-P(X\leq1)\\ & =1-\left(P(X=0)+P(X=1)\right)\\ & =1-\left({n \choose 0}p^{0}\left(1-p\right)^{n-0}+{n \choose 1}p^{1}\left(1-p\right)^{n-1}\right)\\ & =1-\left(\left(1-p\right)^{n}+n\cdot p\cdot\left(1-p\right)^{n-1}\right) \end{aligned}\)
Löse also die Gleichung
\(1-\left(\left(1-p\right)^{n}+n\cdot p\cdot\left(1-p\right)^{n-1}\right) = 0,97\).
nach \(n\). Dabei ist \(p\) die Wahrscheinichkeit, dass eine zufällig ausgewählte Solarzelle mindestens einen Fehler hat. Das \(p\) kannst du mit einem Baumdiagramm bestimmen.
Die Gleichung kann nicht durch Äqivalenzumformungen gelöst werden, weil die Unbekannte \(n\) sowohl im Exponenten vorkommt, als auch außerhalb der Exponenten. Verwende dafür stattdessen ein numerische Verfahren, dass von deinem Taschenrechner zu Verfügung gestellt wird.