Sei \( (X, \mathcal{T}) \) ein topologischer Raum und \( A \subset X . \) Zeigen Sie:
(a) Das Innere von \( A \) ist
$$ \dot{A}=\bigcup\{U: U \subset A \text { und } U \text { offen }\} $$
Außerdem ist \( A \) genau dann offen, wenn \( A \cap \partial A=\emptyset \).
(b) Die abgeschlossene Hülle von \( A \) (kurz: der Abschluss von \( A \) ) ist
$$ \bar{A}=\bigcap\{U: U \supset A \text { und } U \text { abgeschlossen }\} $$
Außerdem ist \( A \) genau dann abgeschlossen, wenn \( \partial A \subset A \)
Ich weiß hier leider gar nicht wie ich an die Sache ran gehen soll.