Ich habe als Grenzwert - 1 raus, also konvergiert das Integral.
Weiß nicht ob es falsch ist?
\( \lim \limits_{t \rightarrow \infty} \int \limits_{0^{+}}^{t} \frac{\cos ^{5}(x)}{e^{x^{3}} \sqrt{x}} x \neq 0 \quad \lim \limits_{b \rightarrow 0} \int \limits_{b}^{t} \frac{\cos ^{5}(x)}{e^{x^{3}} \sqrt{x}} \)
\( f(t)-f(b)=\frac{\cos ^{5}(t)}{e^{t^{3}} \sqrt{t}}-\frac{\cos ^{5}(b)}{e^{b^{3} \sqrt{b}}} =0-1=-1 \)