Aufgabe:
Zeigen Sie, dass die Funktion ƒ : R² → R,
ƒ(x₁,x₂) = {(x₁²+x₂²)*sin(1/x₁²+x₂²), falls (x₁,x₂) ≠ (0,0) , 0 falls (x₁,x₂) = (0,0)}
nicht stetig in a = (0,0) ist.
Problem/Ansatz:
Hallo liebe Mathematiker & Co.,
ich habe das Problem, dass ich gemäß der Aufgabe es nicht schaffe zu zeigen, dass die Funktion in a nicht stetig ist.
Wir haben in der Universität solche Aufgaben entweder mit einem \( \lim\limits_{x\to 0} \) x₃ = (Nullfolge, Nullfolge) gelöst oder über den Differentialquotienten.
Das Produkt bereitet uns hier allemal Bauchschmerzen. An sich ist der Sinusteil mit der Nullfolge \( \frac{1}{π/2 + 2πk} \) = 1. Wobei auch das nicht stimmt, da wir ja noch das Quadrat haben. Mittels dem Differentialquotienten komme ich auch nicht auf einen richtigen Ansatz. Mir Hilft der Gedanke auch nicht weiter, dass ƒ(x₁,x₂) von -1 und 1 umschlossen wird...
Ich würde mich freuen, wenn Ihr mir weiterhelfen würdet.