$$\text{Es gilt }det(A)=det(A^T) \text{, und } det(A\cdot A^T)=det(A)\cdot det(A^T) = det(A)^2 > 0\\ \text{ nach Voraussetzung und Eigenschaften der Determinante.}$$
$$\text{Genau dann folgt } det(A)>0 \vee det(A)<0 \Leftrightarrow det(A)\neq 0 \text{ und die Invertierbarkeit von A.}$$