Aloha :)
Du musst die Differenz der beiden Funktionen bilden und von einer Nullstelle zur nächsten integrieren:$$d(x)=F(x)-G(x)=(-x^4+5x^2)-x^2=-x^4+4x^2=-x^2(x^2-4)$$$$\phantom{d(x)}=-x^2(x-2)(x+2)$$Die Nullsellen liegen bei \(-2;0;2\).
~plot~ -x^4+5x^2 ; x^2 ; {-2|4} ; {2|4} ; {0|0} ; [[-3|3|-3|10]] ~plot~
Damit lautet die gesuchte Fläche:
$$F=\left|\,\int\limits_{-2}^0(-x^4+4x^2)\right|+\left|\,\int\limits_{0}^2(-x^4+4x^2)\right|$$$$\phantom{F}=\left|\left[-\frac{x^5}{5}+\frac{4}{3}x^3\right]_{-2}^0\right|+\left|\left[-\frac{x^5}{5}+\frac{4}{3}x^3\right]_{0}^2\right|$$$$\phantom{F}=\left|\left[-\frac{x^5}{5}+\frac{4}{3}x^3\right]_{-2}^0\right|+\left|\left[-\frac{x^5}{5}+\frac{4}{3}x^3\right]_{0}^2\right|=\frac{64}{15}+\frac{64}{15}=\frac{128}{15}$$