Aloha :)
(1i) Wenn \(\rho:\,\mathbb C^3\to\mathbb C^2\) linear wäre, müsste gelten:$$\rho(a+b)=\rho(a)+\rho(b)\quad;\quad \rho(\lambda\cdot a)=\lambda\cdot \rho(a)\quad\text{für} a\in\mathbb C^3\;;\;\lambda\in\mathbb C$$Aus der 2-ten Forderung folgt mit \(\lambda=0\) sofort, dass \(f(0,0,0)=\binom{0}{0}\) gelten muss. Wir prüfen das nach:$$\rho(0,0,0)=\binom{0+i\cdot0}{1+i\cdot0}=\binom{0}{1}\ne\binom{0}{0}\quad\Longrightarrow\quad\rho \text{ ist nicht linear}$$
(1ii) Wir prüfen für die Abbildung \(D:\,\mathbb R^3\to\mathbb R^3\) die Linearität. Seien dazu \(a,b\in\mathbb R^3\) und \(\lambda\in\mathbb R\).
$$D(a+b)=D(a_1+b_1,a_2+b_2,a_3+b_3)=\begin{pmatrix}a_2+b_2\\-(a_1+b_1)\\a_3+b_3\end{pmatrix}=\begin{pmatrix}a_2\\-a_1\\a_3\end{pmatrix}+\begin{pmatrix}b_2\\-b_1\\b_3\end{pmatrix}$$$$\qquad=D(a_1,a_2,a_3)+D(b_1,b_2,b_3)=D(a)+D(b)\quad\checkmark$$$$D(\lambda\cdot a)=D(\lambda a_1,\lambda a_2,\lambda a_3)=\begin{pmatrix}\lambda a_2\\-\lambda a_1\\\lambda a_3\end{pmatrix}=\lambda\cdot\begin{pmatrix}a_2\\-a_1\\a_3\end{pmatrix}$$$$\qquad=\lambda\cdot D(a_1,a_2,a_3)=\lambda\cdot D(a)\quad\checkmark$$Die Abbilung \(D\) ist also linear.