0 Daumen
3,9k Aufrufe
Hi,

ich soll folgende Funktion ableiten -x/(Wurzel(1-x^2).

Ich wollte das mit der Quotientenregel und der Kettenregel machen.

Folgendes hab ich schon:

u(x)= -x

u'(x)= -1

v(x)= Wurzel(1-x^2)

v'(x)= 1/2*(Wurzel(1-x^2))

-1*(Wurzel(1-x^2))-(-x)*(1-x/(wurzel (1-x^2)) geteilt durch (Wurzel(1-x^2))^2

ab hier stecke ich fest.

Es soll wohl folgendes als Ergebnis rauskommen: -1/(Wurzel(1-x^2))^3 .

Vielen Dank für die Hilfe
Avatar von
Das Resultat, das du bekommen sollst, scheint zu stimmen:

https://www.wolframalpha.com/input/?i=f%28x%29+%3D+-x%2F%28√%281-x%5E2%29

2 Antworten

0 Daumen

Ich habe dir die Ableitung mal unter folgendem Link gemacht:

https://docs.google.com/document/d/1GRNIJbXKkMUJvip7pEKF_ll4tzKv1e9uB16MBer-9-4/pub

 

Ableitung: f(x) = - x/√(1 - x^2)

f(x) = - x/√(1 - x^2)

Ableitung über Quotientenregel:

f(x) = u(x)/v(x)

u(x) = -x
u'(x) = -1

v(x) = √(1 - x^2) = (1 - x^2)^{1/2}
v'(x) = 1/2·(1 - x^2)^{- 1/2}·(-2·x) = -x/√(1 - x^2)

f'(x) = (u'(x)·v(x) - u(x)·v'(x))/v(x)^2
f'(x) = (-1·√(1 - x^2) - (-x)·(-x/√(1 - x^2)))/(1 - x^2)
f'(x) = - 1/√(1 - x^2) - x^2/(1 - x^2)^{3/2}
f'(x) = - (1 - x^2)/(1 - x^2)^{3/2} - x^2/(1 - x^2)^{3/2}
f'(x) = (x^2 - 1 - x^2)/(1 - x^2)^{3/2}
f'(x) = - 1/(1 - x^2)^{3/2}

 

Avatar von 488 k 🚀
0 Daumen

u(x)= -x

u'(x)= -1

v(x)= Wurzel(1-x2)             Hier musst du noch die Kettenregel benutzen.

.                     innere Ableitung -2x

v'(x)= 1/2*(Wurzel(1-x2))^(-1/2) * (-2x) = -x/(Wurzel(1-x2))
Nach Quotientenregel:
f'(x) = (-1*(Wurzel(1-x2))-(-x)(-x)/(Wurzel(1-x2))     ))  /   (Wurzel(1-x2))2

f'(x) = (-1*(√(1-x2)*(√(1-x2)/(√(1-x2))-(x^2)/(√(1-x2))     ))  /   (√(1-x2))2

f'(x) = (-1*(1-x2)/(√(1-x2))-(x^2)) /(√(1-x2))     ))  /   ((√(1-x2))/ 1)

               .                         Brüche subtrahieren und dann mit Kehrbruch des Nenners

.                                        multiplizieren

f'(x) = (-1+x^2 -x^2)   /   (Wurzel(1-x2))3

f'(x) = -1 /  (Wurzel(1-x2))3

Avatar von 162 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community