hallo
hier ist noch eine alternate form
\(
v(x,y,z) = \\
\left(
\left(\frac{x^{\frac{1}{p-1}} \cdot y} {x^{\frac{p}{p-1}} \cdot z^{\frac{p}{p-1}}} \right)^p
+
\left(\frac{z^{\frac{1}{p-1}} \cdot y} {x^{\frac{p}{p-1}} \cdot z^{\frac{p}{p-1}}} \right)^p
\right)^{\frac{1}{p}} = \\
\left(
\left( x^{\frac{1}{p-1}} \cdot y \cdot x^{\frac{-p}{p-1}} \cdot z^{\frac{-p}{p-1}} \right)^p
+
\left( z^{\frac{1}{p-1}} \cdot y \cdot x^{\frac{-p}{p-1}} \cdot z^{\frac{-p}{p-1}} \right)^p
\right)^{\frac{1}{p}} = \\
\left(
x^{\frac{p}{p-1}} \cdot y^p \cdot x^{\frac{-p^2}{p-1}} \cdot z^{\frac{-p^2}{p-1}}
+
z^{\frac{p^2}{p-1}} \cdot y^p \cdot x^{\frac{-p^2}{p-1}} \cdot z^{\frac{-p^2}{p-1}}
\right)^{\frac{1}{p}} = \\
\left(
x^{\frac{p}{p-1}} \cdot y^p \cdot x^{\frac{-p^2}{p-1}} \cdot z^{\frac{-p^2}{p-1}}
+
z^{\frac{p^2}{p-1}} \cdot y^p \cdot x^{\frac{-p^2}{p-1}} \cdot z^{\frac{-p^2}{p-1}}
\right)^{\frac{1}{p}} = \\
\left(
y^p \cdot x^{\frac{-p^2}{p-1}} \cdot z^{\frac{-p^2}{p-1}} \left(x^{\frac{p}{p-1}} + z^{\frac{p^2}{p-1}} \right)
\right)^{\frac{1}{p}} = \\
y \cdot x^{\frac{-p}{p-1}} \cdot z^{\frac{-p}{p-1}} \left(x^{\frac{p}{p-1}} + z^{\frac{p^2}{p-1}}\right)^{\frac{1}{p}} = \\
y \cdot x^{\frac{p}{1-p}} \cdot z^{\frac{p}{1-p}} \left(x^{\frac{p}{p-1}} + z^{\frac{p^2}{p-1}}\right)^{\frac{1}{p}} = \\
y \cdot \sqrt[1-p]{x^p \cdot z^p} \left(x^{\frac{p}{p-1}} + z^{\frac{p^2}{p-1}}\right)^{\frac{1}{p}}
\)