b) z^2 + (1 + i)*z + i = 0
z^2 + (1 + i)*z = - i
(z+\( \frac{1 + i}{2} \)) ^2= - i + \( \frac{1+2i+i^2}{4} \) = - \( \frac{1}{2} \) i
z₁ = - \( \frac{1 + i}{2} \) + \( \sqrt{ - \frac{1}{2} i } \) = - \( \frac{1 + i}{2} \) + \( \frac{1}{2} \) - \( \frac{1}{2} \) i = - i
z₂ = - \( \frac{1 + i}{2} \) - \( \sqrt{ - \frac{1}{2} i } \) = - \( \frac{1 + i}{2} \) - \( \frac{1}{2} \) + \( \frac{1}{2} \) i = - 1
mit Wolfram \( \sqrt{ - \frac{1}{2} i } \) =...
mfG
Moliets