Aloha :)
Die stationären Punkte von:$$f(x,y)=\frac{y^3}{3}-\frac{3}{2}y^2-4y+\frac{x^3}{3}+\frac{x^2}{2}-6x$$findest du dort, wo die partiellen Ableitungen zu null werden:
$$\frac{\partial f}{\partial x}=x^2+x-6=(x+3)(x-2)\quad;\quad\frac{\partial f}{\partial y}=y^2-3y-4=(y+1)(y-4)$$
Die Nullstellen \(x=-3\) bzw. \(x=2\) und \(y=-1\) bzw. \(y=4\) ergeben zusammen vier stationäre Punkte:
$$(-3|-1)\quad;\quad(-3|4)\quad;\quad(2|-1)\quad;\quad(2|4)$$