Aloha :)
Willkommen in der Mathelounge...
Wir schreiben die Funktion mit Hilfe von Summenzeichen$$f(\vec x)=\vec x^T\cdot(\mathbf A\cdot\vec x)=\sum\limits_{i=1}^nx_i(\mathbf A\cdot\vec x)_i=\sum\limits_{i=1}^nx_i\sum\limits_{k=1}^nA_{ik}x_k=\sum\limits_{i=1}^n\sum\limits_{k=1}^nA_{ik}x_ix_k$$um nun die partiellen Ableitungen bestimmen zu können:
$$\frac{\partial f}{\partial x_j}=\sum\limits_{i=1}^n\sum\limits_{k=1}^n\frac{\partial}{\partial x_j}\left(A_{ik}x_ix_k\right)=\sum\limits_{i=1}^n\sum\limits_{k=1}^n\left(A_{ik}\,\delta_{ji}\,x_k+A_{ik}x_i\,\delta_{jk}\right)$$Darin ist das sog. "Kronecker-Delta" \(\delta_{ik}=1\), falls \(i=k\), und \(\delta_{ik}=0\), falls \(i\ne k\).
$$\phantom{\frac{\partial f}{\partial x_j}}=\sum\limits_{i=1}^n\sum\limits_{k=1}^nA_{ik}\,\delta_{ji}\,x_k+\sum\limits_{i=1}^n\sum\limits_{k=1}^nA_{ik}x_i\,\delta_{jk}=\sum\limits_{k=1}^nA_{jk}\,x_k+\sum\limits_{i=1}^nA_{ij}\,x_i$$
$$\phantom{\frac{\partial f}{\partial x_j}}=\sum\limits_{k=1}^nA_{jk}\,x_k+\sum\limits_{i=1}^n(A^T)_{ji}\,x_i=(\mathbf A\cdot\vec x)_j+(\mathbf A^T\cdot\vec x)_j$$
Damit haben wir den Gradienten gefunden:
$$\operatorname{grad}f(\vec x)=(\mathbf A+\mathbf A^T)\cdot\vec x$$