0 Daumen
611 Aufrufe

Aufgabe:

Seien V,W Vektorräume und f : V → W linear. Zeigen Sie:


a) f injektiv <=> ker f = {0}

b) ker f ist ein Untervektorraum von V.

c) Im f ist ein Untervektorraum von W.

Avatar von

Da Sie offenbar so große Schwierigkeiten mit den Aufgaben auf meinen Übungsblättern haben, dass sie hier sämtliche Aufgaben von zwei Übungsblättern gepostet haben, empfehle ich, besuchen Sie doch meine Vorlesung. Nächster Termin: Morgen 8 Uhr. Dann erkläre ich Ihnen auch, warum Sie sich mit dieser Aufgabe nicht mehr beschäftigen müssen.

1 Antwort

0 Daumen

Wenn \(f\) injektiv ist, dann gilt \(f(v) = f(0) \implies v=0\).

Ist \(\operatorname{ker} f = \{0\}\), dann gilt \(f(v) = f(w) \implies f(v) - f(w) = 0 \implies f(v-w) = 0\implies v-w = 0 \implies v=w\).

Avatar von 107 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community