Aufgabe:
Wir sagen, dass zwei Metriken \( d \) und \( d^{\prime} \) auf einer Menge \( X \) äquivalent sind, \( d \sim d^{\prime} \), wenn es Konstanten \( \alpha, \beta>0 \) gibt, so dass für alle \( x, y \in X \) gilt
$$ \alpha d^{\prime}(x, y) \leq d(x, y) \leq \beta d^{\prime}(x, y) $$
1. Zeigen Sie, dass die Relation \( \sim \) eine Äquivalenzrelation auf der Familie aller Metriken auf \( X \) ist.
2. Es seien \( d \) und \( d^{\prime} \) zwei äquivalente Metriken auf einer Menge \( X \). Zeigen Sie:
(a) Es gibt zu jedem \( x \in X \) und jedem \( \varepsilon>0 \) positive Zahlen \( \delta, \delta^{\prime}>0 \), so dass
$$ \begin{array}{l} B_{\delta^{\prime}}^{d}(x):=\left\{y \in X \mid d(x, y)<\delta^{\prime}\right\} \subset B_{\varepsilon}^{d^{\prime}}(x):=\left\{y \in X \mid d^{\prime}(x, y)<\varepsilon\right\} \\ B_{\delta}^{d^{\prime}}(x):=\left\{y \in X \mid d^{\prime}(x, y)<\delta\right\} \subset B_{\varepsilon}^{d}(x):=\{y \in X \mid d(x, y)<\varepsilon\} \end{array} $$ gilt.
(b) Die Metriken \( d \) und \( d^{\prime} \) induzieren dieselbe Topologie auf \( X \), d.h., eine Menge in \( X \) ist offen bezüglich der Metrik \( d \), genau dann, wenn sie offen bezüglich der Metrik \( d^{\prime} \) ist.
Mir ist bewusst das ich in 1. die Eigenschaften einer Äquivalenzrelation (also Reflexivität usw.) zeigen muss, jedoch verstehe ich nicht wie ich das mit der Ungleichung anstelle.
Bei der 2.a muss ich doch nur die Mengeninklusion zeigen, bei 2.b komme ich gar nicht klar.
!