Aloha :)
Um Klammern zu sparen, schreibe ich \(\cdot\) statt \(\land\) und \(+\) statt \(\lor\), zusätzlich soll Punkt-vor-Strich gelten. Beim Auflösen der Implikation \(A\implies B\) musst du beachten, dass man aus etwas Wahrem nichts Falsches folgern kann. Daher ist die Implikation gleichbedeutend mit \((\overline A+B)\). Mit Hilfe der Regeln von de-Morgan ist dann:
$$(P+\underbrace{(Q\implies\overline P)}_{=(\overline Q+\overline P)})\cdot\overline{(\overline R\cdot(\overline S\,\overline R))}=(P+\overline Q+\overline P)\cdot(\overline{\overline R}+\overline{\overline S\,\overline R})$$$$=(\underbrace{P+\overline P}_{=1}+\overline Q)\cdot(R+\overline{\overline{S+R}})=1\cdot(R+S+R)=R+S$$