Aufgabe:
1) Sei p ∈ N eine Zahl mit p ≡ 3 mod 4. Zeigen Sie, dass p nicht als Summe von zwei Quadraten von ganzen Zahlen geschrieben werden kann, d.h. es gibt keine ganzen Zahlen a, b ∈ Z mit p= a2+ b2
Hinweis: Überlegen Sie zunächst, welche Werte die Restklasse einer Quadratzahl
in Z/4 haben kann.
2) Finden Sie eine Primzahl p mit 500 < p < 1000, so dass p ≡ 1 mod 4 gilt.
Finden Sie dann a, b ∈ Z mit p = a^2+ b^2