Zu einem Vektorraum gehört eine Multiplikation mit Skalaren aus einem Körper.
Ist \(K\) ein solcher Körper für den Vektorraum \(V\), dann nennt man \(V\) einen \(K\)-Vektorraum.
Beispiele:
\(\mathbb{R}^3\) ist ein dreidimensionaler \(\mathbb{R}\)-Vektorraum mit Basis
\(\mathcal{B}_1 = \left\{\begin{pmatrix}1\\0\\0\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix},\begin{pmatrix}0\\0\\1\end{pmatrix}\right\}\).
\(\mathbb{C}^2\) ist ein zweidimensionaler \(\mathbb{C}\)-Vektorraum mit Basis
\(\mathcal{B}_2 = \left\{\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix}\right\}\).
\(\mathbb{Q}^2\) ist ein zweidimensionaler \(\mathbb{Q}\)-Vektorraum.
Lässt man jetzt in einem \(K\)-Vektorraum \(V\) nicht mehr Multiplikation mit Skalaren aus dem ganzen Körper \(K\) zu, sondern nur noch Multiplikation mit Skalaren aus einem Unterkörper \(K'\leq K\), dann bekommt man einen \(K'\)-Vektorraum \(V'\). Die Vektoren in \(V\) und \(V'\) sind dann noch die selben, aber es sind in \(V'\) nicht mehr alle Linearkombinationen möglich, die in \(V\) möglich sind. Deshalb hat \(V'\) eine andere Dimension als \(V\)
Beispiele:
\(\mathbb{R}^3\) ist ein unendlichdimensionaler \(\mathbb{Q}\)-Vektorraum. Insbesondere ist \(\mathcal{B}_1\) keine Basis mehr, weil \(\begin{pmatrix}\pi\\\sqrt{2}\\\mathrm{e}\end{pmatrix}\) nicht mehr als Linearkombination aus \(\mathcal{B}_1\) dargestellt werden kann.
\(\mathbb{C}^2\) ist ein vierdimensionaler \(\mathbb{R}\)-Vektorraum mit Basis
\(\mathcal{B}_3=\left\{\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}\mathrm{i}\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix},\begin{pmatrix}0\\\mathrm{i}\end{pmatrix}\right\}\).
Warum ist (IR, +) und (IR, +.*) ein endlichdimensionaler Vektorraum aber (IQ, +, *) ein unendlichdimensionaler Vektorraum?
Wegen des Körpers, der zugrunde gelegt wurde. Wobei ich mir nicht so richtig vorstellen kann, wie man hinbekommt, dass \((\mathbb{Q}, +,\cdot)\) unendlichdimensional ist.