Hallo :-)
Rechne doch einfach mal nach. Definiere dir dafür eine komplexe Zahl \(z\in \mathbb{C}\setminus \{0\}\) durch \(z=a+b \cdot i,\quad a,b\in \mathbb{R}\). Jetzt setzt du mal ein:
\(\operatorname{Re}\left(\frac{1}{z}\right)=\operatorname{Re}\left(\frac{1}{a+b\cdot i}\right)=\operatorname{Re}\left(\frac{a-b\cdot i}{(a+b\cdot i)\cdot (a-b\cdot i)}\right)=...\)
Nutze dabei auch die Linearität vom Operator \(\operatorname{Re}(.)\) aus.