Aufgabe:
Zum Beweisen:
Für P(B) > 0 ist die durch PB(A) = P(A|B) definierte Funktion PB : A → [0, 1] ein Wahrscheinlichkeitsmaß auf (Ω, A)
Dankeee :)
Begründe
P((⋃n=0∞An)∣B)=∑n=0∞P(An∣B)P\left(\left(\bigcup\limits_{n=0}^\infty A_n\right)|B\right) = \sum\limits_{n=0}^\infty P(A_n|B)P((n=0⋃∞An)∣B)=n=0∑∞P(An∣B).
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos