Text erkannt:
a) Wir betrachten die Kurven \( C_{1} \) und \( C_{2} \), gegeben durch die Parameterdarstellungen
$$ \begin{array}{c} \vec{c}_{1}:[1, \sqrt{e}] \rightarrow \mathbb{R}^{5}, \vec{c}_{1}(t)=\left(\ln (t), t, \frac{t^{2}}{2}, \cos (t), \sin (t)\right)^{\top} \\ \text { und } \vec{c}_{2}:[0,2 \pi] \rightarrow \mathbb{R}^{2}, \vec{c}_{2}(t)=\left(\cos (t)+\cos ^{2}(t), \sin (t)+\sin (t) \cos (t)\right)^{\top} \end{array} $$
Untersuchen Sie jeweils, ob es sich um eine reguläre Kurve handelt, und berechnen Sie die Bogenlängen. Hinweis: Zeigen Sie zunächst die Identität \( \left|\dot{\vec{c}}_{2}(t)\right|^{2}=2+2 \cos t=4 \cos ^{2}\left(\frac{t}{2}\right) \).
b) Wir betrachten die Kurve \( C_{3} \), gegeben durch die Parameterdarstellung
$$ \vec{c}_{3}(t):[0, \pi] \rightarrow \mathbb{R}^{3}, \vec{c}_{3}(t)=\left(t-\sin (t), 1-\cos (t), 4 \sin \left(\frac{t}{2}\right)\right)^{\top} $$
Bestimmen Sie die Parameterdarstellung nach der Bogenlänge.
kann mir jemand bei dieser Aufgabe helfen.... Vielen Dank im Voraus
Aufgabe: