Aufgabe:
Wieso gilt dieser Zusammenhang NICHT:
\( \sum \limits_{i=1}^{n} \varepsilon_{i}=\sum \limits_{i=1}^{n} \varepsilon_{i} \)
Das rechte Epsilon hat einen Hut auf...
Mal im Ernst, was ist \(\varepsilon_i\), was ist \(\hat{\varepsilon_i}\)?
(ohne Hut) = Summe der Störvariablen ;(mit Hut) = Summe der Residuen
Vom Duplikat:
Titel: Wieso gilt diese Gleichung bei der Regressionsanalyse
Stichworte: regression,statistik
Wieso gilt diese Gleichung?
\( \sum \limits_{i=1}^{n} y_{i}=\sum \limits_{i=1}^{n} \hat{y}_{i} \)
Warum sollte sie denn gelten? immer schwer zu sagen, warum etwas nicht gilt, damit sparst du dir ein -argument, warum es gelten sollt, " summen ĂŒber verschiedene Dinge sind i.A. meist verschieden.
lul
Warum, meinst Du, sollte sie gelten?
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos