Ich wäre vermutlich so in etwa vorgegangen:
\(\sum\limits_{i=1}^{n} \frac{1}{k^{\frac{3}{2}}} = \sum\limits_{i=1}^{n} \frac{1}{k\sqrt{k}} = 1+...+\frac{1}{4\sqrt{4}} + ...+\frac{1}{16\sqrt{16}}+ ... + \frac{1}{64\sqrt{64}}+ ... + \frac{1}{256\sqrt{256}}+ ...\)
Man beachte die Besonderheiten ("ganzzahligen Breakpoints") der Reihe:
Die einzigen ganzzahligen Nenner in den Summanden liegen bei \(\frac{1}{4^l\cdot \sqrt{4^l}} = \frac{1}{2^{2l} \cdot 2^l} = \frac{1}{2^{3l}}\) für jedes \(l\in \mathbb{N}\).
Wir schätzen nun insbesondere die Terme zwischen und inkl. den Breakpoints (also die oben durch "..." verdeutlicht wurden) ab.
Dann können wir nämlich (z.B.) wie folgt abschätzen:
\(1+\frac{1}{2\sqrt{2}}+\frac{1}{3\sqrt{3}} \leq 1 + 1 + 1 = 3 = 3\cdot \left(\frac{1}{2}\right)^0\).
\(\frac{1}{4\sqrt{4}} + \frac{1}{5\sqrt{5}} + ... + \frac{1}{15\sqrt{15}} \leq \frac{1}{4\sqrt{4}} + \frac{1}{4\sqrt{4}} + ... + \frac{1}{4\sqrt{4}} = 12 \cdot \frac{1}{4\sqrt{4}} = 12 \cdot \frac{1}{8} = (3\cdot 2^2) \cdot \left(\frac{1}{2}\right)^3 = 3\cdot \left(\frac{1}{2}\right)^1\).
\(\frac{1}{16\sqrt{16}} + \frac{1}{17\sqrt{17}} + ... + \frac{1}{63\sqrt{63}} \leq \frac{1}{16\sqrt{16}} + \frac{1}{16\sqrt{16}} + ... + \frac{1}{16\sqrt{16}} = 48 \cdot \frac{1}{16\sqrt{16}} = 48 \cdot \frac{1}{64} = 48\cdot \left(\frac{1}{2}\right)^6 = (3\cdot 2^4)\cdot \left(\frac{1}{2}\right)^6 = 3\cdot \left(\frac{1}{2}\right)^2\).
Das Muster führt sich entsprechend fort.
Zusammenfassend \((*)\) gilt für jedes \(l\in \mathbb{N}\), dass \(\sum\limits_{i=4^l}^{4^{l+1}-1} \frac{1}{i\sqrt{i}} \leq 3\cdot \left(\frac{1}{2}\right)^l\).
Beweis: Alle \((4^{l+1}-1)-(4^l)+1 = 3\cdot 4^l = 3\cdot 2^{2l}\) Summanden sind \(\leq \frac{1}{4^l\cdot \sqrt{4^l}} = \frac{1}{2^{3l}}\), d.h. die Summe ist \(\leq 3\cdot 2^{2l}\cdot \frac{1}{2^{3l}} = 3\cdot \left(\frac{1}{2}\right)^l\).
Zerlegen wir unsere Summe also:
\(\sum\limits_{i=1}^{n} \frac{1}{k\sqrt{k}} = \sum\limits_{i=4^0}^{4^{1}-1} \frac{1}{i\sqrt{i}} + \sum\limits_{i=4^1}^{4^{2}-1} \frac{1}{i\sqrt{i}} + ... + \sum\limits_{i=4^t}^{4^{t+1}-1} \frac{1}{i\sqrt{i}} + \sum\limits_{i=4^{t+1}}^{n} \frac{1}{i\sqrt{i}}\)
wobei \(t\) ganzzahlig maximal unter der Eigenschaft \(4^{t+1}-1\leq n\) ist, d.h. \(t=\lfloor\log_4(n+1)\rfloor-1\).
Den letzten Term können wir ebenfalls abschätzen: \(\sum\limits_{i=4^{t+1}}^{n} \frac{1}{i\sqrt{i}}\leq \sum\limits_{i=4^{t+1}}^{4^{t+2}} \frac{1}{i\sqrt{i}}\).
Also können wir abschätzen mit
\(\sum\limits_{i=1}^{n} \frac{1}{k\sqrt{k}} \leq \sum\limits_{i=0}^{t+1}\left(\sum\limits_{j=4^i}^{4^{i+1}-1} \frac{1}{j\sqrt{j}}\right) \overset{(*)}{\leq} \sum\limits_{i=0}^{t+1} 3 \cdot (\frac{1}{2})^i = 3\cdot \sum\limits_{i=0}^{t+1} (\frac{1}{2})^i = 3\cdot \frac{1-\left(\frac{1}{2}\right)^{t+2}}{1-\frac{1}{2}} = 6\cdot \left(1-\left(\frac{1}{2}\right)^{t+2}\right)\).
Wegen \(6\cdot \left(1-\left(\frac{1}{2}\right)^{t+2}\right) = 6\cdot \left(1-\left(\frac{1}{2}\right)^{\lfloor\log_4(n+1)\rfloor+1}\right) \xrightarrow{n\to \infty} 6\cdot (1-0) = 6\) folgt letztlich die Konvergenz.