\(y=\frac{x}{2}+\sqrt{\frac{x^2}{4}-1}\)
\(y-\frac{x}{2}=\sqrt{\frac{x^2}{4}-1}\)
\((y-\frac{x}{2})^2=\frac{x^2}{4}-1\)
\(y^2-2y\frac{x}{2}+\frac{x^2}{4}=\frac{x^2}{4}-1\)
\(y^2-2y\frac{x}{2}=-1\)
\(-2y\frac{x}{2}=-1-y^2\)
\(y\frac{x}{2}=\frac{1}{2}+\frac{y^2}{2}\)
\(\frac{x}{2}=\frac{1}{2y}+\frac{y}{2}\)
\(x=\frac{1}{y}+y\)
Also Umkehrfunktion \(\frac{1}{x}+x\)
sieht so aus
~plot~ x/2+sqrt(x^2/4-1);x+1/x;x ~plot~