Aufgabe:In der Aufgabe geht es um Folgen und Reihen. Dabei ist eine Spirale gegeben, die jeweils aus Halbkreisen besteht, wobei jeder Radius des Folgekreises um den Faktor q kleiner wird. Dadurch entsteht wie schon beschrieben eine Spirale, die auf einen Punkt x in der Mittel der Spirale zuläuft. Dier Mittelpunkt x ist zu ermitteln.Problem/Ansatz:Mein Ansatz dabei war es, die Abstände zwischen jeweils zwei Halbkreisen links vom x aufzuaddieren und somit die ganze Strecke von 0 bis x zu erhalten.Daher habe ich mir folgende Summenformel erstellt:$$ \sum_{n=0}^{unendlich} (\frac{5}{6})^{2n} - (\frac{5}{6})^{2n+1} $$5/6 ist dabei der Faktor x.Ich habe mal Testweise für große n ausgerechnet und kam dabei auf ein Ergebnis von 6/11, was meiner Meinung nach auch richtig ist.Wie kann ich jetzt aber die Summenfolge von oben ohne Taschenrechner berechnen, bzw. ohne einfach große n einzusetzen?Ich brauche also einen anderen Weg dafür, den Grenzwert der beschriebenen Folge zu ermitteln.Dank im Voraus.