Aufgabe:
Wir haben auf Z×N die folgende Relation definiert und wissen bereits, dass es sich um eine Äquivalenzrelation handelt:
(a1,a2)≡(b1,b2):⇔a1⋅b2=a2⋅b1
für (a1,a2),(b1,b2)∈Z×N.
1) Zeigen Sie, dass die Multiplikation assoziativ und kommutativ ist.
Wir haben auf Z×N die folgende Relation definiert und wissen bereits, dass es sich um eine Äquivalenzrelation handelt:
(a1,a2)≡(b1,b2):⇔a1⋅b2=a2⋅b1
für (a1,a2),(b1,b2)∈Z×N.
2) Zeigen Sie, dass die Addition assoziativ und kommutativ ist.
3) Zeigen Sie, dass das Distributivgesetz (mit der Multiplikation aus Aufgabe 1) gilt.
Problem/Ansatz:
Ich habe das noch nicht ganz verstanden, könnte mir jemande bei den Aufgaben helfen?