Aloha :)
Die erste Ableitung von$$f(x)=e^{-x}(x^2-x+1)$$erhalten wir mit der Produktregel:$$f'(x)=-e^{-x}(x^2-x+1)+e^{-x}(2x-1)=-e^{-x}(x^2-3x+2)=e^{-x}(x-2)(x-1)$$Da die \(e\)-Funktion immer positiv ist, finden wir zwei mögliche Nullstellen der ersten Ableitung, bei \(x=1\) und bei \(x=2\). Das sind zwei Kandidaten für Extrema.
Wir prüfen die Kandidaten, mit der zweiten Ableitung:$$f''(x)=-e^{-x}(x-2)(x-1)+e^{-x}(x-1)+e^{-x}(x-2)$$$$f''(1)=\frac1e>0\implies\text{Minimum bei }x=1$$$$f''(2)=-\frac{1}{e^2}<0\implies\text{Maximum bei }x=2$$