Hallo,
y=ax²+bx+c
Jetzt die Koordinaten der drei Punkte einsetzen und das Gleichungssystem lösen.
1=a+b+c (1)
1=25a+5b+c (2)
4=9a+3b+c (3)
c eliminieren:
(2)-(1) 0=24a+4b --> 0=12a+2b
(3)-(1) 3=8a+2b
Nun die letzten beiden Gleichungen sutrahieren, liefert a=-3/4.
usw.
:-)
Es gibt auch noch die geniale Methode:
Da Parabeln achsensymmetrisch sind und die Punkte (1|1) und (5|1) den gleichen y-Wert haben, muss der x-Wert des Scheitelpunktes in der Mitte von 1 und 5, also bei 3 liegen.
Der Scheitelpunkt ist demnach (3|4).
y=a(x-3)²+4
x=5, y=1 einsetzen.
1=a(5-3)²+4 → a=-0,75
y=-0,75(x-3)²+4
Bei Bedarf noch ausmultiplizieren.
☺