0 Daumen
271 Aufrufe

Aufgabe:

Screenshot 2022-06-02 085722.png

Text erkannt:

Seien \( a<b \) und \( x_{0} \in(a, b) \). Weiter sei \( f:(a, b) \rightarrow \mathbb{R} \) stetig in \( [a, b] \) sowie differenzierbar in allen \( x \in(a, b) \backslash\left\{x_{0}\right\} \). Die Ableitung \( f^{\prime}:(a, b) \backslash\left\{x_{0}\right\} \rightarrow \mathbb{R} \) erfülle
\( \lim \limits_{x \searrow x_{0}} f^{\prime}(x)=\lim \limits_{x \nearrow x_{0}} f^{\prime}(x)=: z_{0} . \)
Zeigen Sie, dass \( f \) dann in \( x_{0} \) differenzierbar ist mit
\( f^{\prime}\left(x_{0}\right)=z_{0} . \)
Hinweis: Betrachten Sie
\( \lim \limits_{x \searrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \text { und } \lim \limits_{x \nearrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}, \)
indem Sie den Mittelwertsatz auf \( \left[x_{0}, x\right] \) bzw. \( \left[x, x_{0}\right] \) anwenden.




Problem/Ansatz:

Blicke da leider null durch..

Avatar von
Blicke da leider null durch..

Um das zu ändern, könntest Du doch einfach den Hinweis verfolgen und aufschreiben, was der Mittelwertsatz über z.B.

$$\frac{f(x)-f(x_0)}{x-x_0}$$

für \(x>x_0\) aussagt.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community