Aufgabe:Für n∈ℕdefiniere A^(n) k:=e^(2πik/n) ∈ℂfür k=0,....,n-1 und betrachte den polygonzug Pn mit Eckpunkten A^(n)0, A^(n)1,...,A^(n)n. Das heißt.
Pn=[A^(n)0, A^(n)1]∪[A^(n)1, A^(n)2]∪... ∪[A^(n)n-1, A^(n)n],
Wobei [A, B] die Strecke zwischen A, B∈ℂ bezeichnet.
a) Skizzieren Sie P5
b) zeigen Sie für t ∈ℝ, dass |e^(it) - e(-it) |=2|sin(t) |
c) Sei Ln die Länge des polygonzugs Pn. Zeigen Sie Ln=2nsin(π/n)
d) Berechnen Sie lim n->∞ Ln.
Problem/Ansatz:
Wie löst man diese Aufgabe?
Text erkannt:
Für \( n \in \mathbb{N} \) definiere \( A_{k}^{(n)}:=e^{\frac{2 \pi i k}{n}} \in \mathbb{C} \) für \( k=0, \ldots, n-1 \) und betrachte den Polygonzug \( P_{n} \) mit Eckpunkten \( A_{0}^{(n)}, A_{1}^{(n)}, \ldots, A_{n}^{(n)} \). Das heißt
\( P_{n}=\left[A_{0}^{(n)}, A_{1}^{(n)}\right] \cup\left[A_{1}^{(n)}, A_{2}^{(n)}\right] \cup \ldots \cup\left[A_{n-1}^{(n)}, A_{n}^{(n)}\right] \)
wobei \( [A, B] \) die Strecke zwischen \( A, B \in \mathbb{C} \) bezeichnet.
(a) Skizzieren Sie \( P_{5} \).
(b) Zeigen Sie für \( t \in \mathbb{R} \), dass \( \left|e^{i t}-e^{-i t}\right|=2|\sin (t)| \).
(c) Sei \( L_{n} \) die Länge des Polygonzugs \( P_{n} \). Zeigen Sie \( L_{n}=2 n \sin \left(\frac{\pi}{n}\right) \).
(d) Berechnen Sie \( \lim \limits_{n \rightarrow \infty} L_{n} \).